present stable atoms have been formed in long periods of development out of the original bulk of protons, the remainder of which appears in the spectra of the A-type stars, the prominences on the sun, and the water on earth, the basic matter of all organisms, including ourselves—without water, no protoplasm and no life would have been possible. This means that in those cosmic furnaces—the central parts deep in the stars—the entire world was, and still is, fabricated, the materials constituting its matter as well as the radiations constituting its life. It is this life which appears, greatly weakened, at the hot stellar surfaces and, again a thousand times weakened, transformed into the life-energy of living beings.

Another difficulty arises: to penetrate into the heavier nuclei, hence to build the heavier atoms, theory may demand still greater densities and greater velocities of the protons, corresponding to still higher temperatures of hundreds or thousands of millions of degrees; these we do not find even in the stellar interiors. Can the heaviest nuclei, of uranium, of lead, of gold, perhaps have been present as original matter in the world? What, then, does the word 'original' mean here? Or shall we assume that the required conditions once existed in the past and now have disappeared—so that the heavy atoms are remainders, a kind of archaeological remains from conditions long passed? It may be plausible to connect the needed high temperatures with the original condition of closely packed galaxies and stars 2,000 million years ago. But all such ideas are a hesitant groping in a dark past.

So here, too, is an endless field of new problems to be cleared, where only the first sods have been cut. Here also we are working with millions, not for distances now and dimensions, but for intensities of energy. Here our path leads not towards the infinitely large, to study the great structure of the universe, but towards the infinitely small, to study the finest structure of nature, of what in the coarse-grained world of the senses is called 'matter' and 'radiation'.

And again this must be accomplished by a combination of sciences, of theoretical physics and abstract mathematics, tested by observation of matter and the radiation of various celestial bodies. Here, too, astronomy takes part in the elucidation of the essence of the world.

A HISTORY OF ASTRONOMY

APPENDICES

APPENDIX A

ARISTARCHUS' DERIVATION OF THE SUN'S DISTANCE

Aristarchus' seventh proposition is the most important, since it is there that the essential numerical result is derived. The demonstration is interesting enough, in its value to future astronomy, to reproduce it here in brief. In the figure A represents the position of the sun, B of the earth, C of the moon when seen halved. Hence angle $\angle EBD = \angle BAC = 3^\circ$. Let the angle $\angle FBE (= 45^\circ)$ be bisected by BG. Since the ratio of a great and a small tangent to a circle is greater than the ratio of the underlying arcs and angles, the ratio $GE$ to $HE$ will be greater than the ratio of $1$ to $30$ of a right angle; i.e. greater than $15/2$. Furthermore $FG : BF = BE : BE = \sqrt{2}$, greater than $7/5$; hence $FE/GE$ is greater than $12/5$. Combining it with the first inequality, we find the ratio of $FE$ to $HE$ greater than $12/5 \times 15/2 = 18$; and the ratio $AB/BC$ which is equal to $BH/HE$, hence a little bit larger than $BE/HE$ is certainly also greater than $18$. Applying, on the other hand, the proposition that the ratio of a great and a small chord is smaller than the ratio of the subtended arcs, upon $DE$ subtending $6^\circ$ in the half-circle $BDE$, and the side of a regular hexagon, equal to the radius, subtending an arc of $60^\circ$, we find the ratio of $1/4$ $BE$ to $DE$ smaller than $10$, hence the ratio of $AB$ to $BC$ smaller than $20$. 

Fig. 38
A HISTORY OF ASTRONOMY

APENDIX B

APOLLONIUS’ DERIVATION OF THE PLANETS’ STATIONS

The computation of the stations of the planets in the epicycle theory was reduced by Apollonius to the geometrical problem of drawing a line intersecting the epicycle in such a way that the sections have a definite ratio. Through the revolution of the entire epicycle towards the left side the planet situated on its circumference moves from point 1 to point 2 over a distance equal to the angular velocity of this revolution times the distance earth – planet. At the same time the planet on its epicycle moves toward the right side, from point 1 to point 3 over a distance equal to the angular velocity on the epicycle times the radius of the epicycle. The latter displacement from the earth is seen foreshortened in the same ratio as exists between the distances planet – footpoint of the perpendicular and centre – planet. The planet seems to be at rest when the two displacements are seen from the earth to compensate. This will happen when the two distances planet – footpoint and planet – earth have the inverse ratio of the angular velocities. Or in other words: the planet has a station when the distance earth – planet and half the chord in the epicycle have the same ratio as the period of revolution and the synodic period.

APPENDICES

APPENDIX C

NEWTON’S DEMONSTRATION OF THE LAW OF AREAS

In his Proposition I Newton derives Kepler’s Law of Areas from the supposition that a revolving body is subject to a centripetal force directed to a fixed point. For the demonstration he makes use of equal finite time intervals, after each of which the force gives a finite impulse to the body towards the centre S. During one interval, from A to B, the motion remains the same; then at B it is suddenly changed by the additional motion BV. In the second interval, instead of continuing the motion along Be = AB the body follows the resulting path BC. Since, geometrically, the areas SAB and SBc are equal and because the impulse BV is directed toward S, the areas SBe and SBC are equal, the area SBC is equal to SAB. This holds for every further interval; every next triangular area is equal to the preceding one. So all the triangular areas described in equal time intervals are equal, and they will lie all in the same place. This holds also when the time intervals are taken ever smaller and their number ever greater in the same rate. Then, finally, we have a continuously acting force and a curved orbit, for which the areas described are proportional to the time used.
In his Proposition XI (Cajori, p. 56), for the case of an elliptical orbit, Newton derives the centripetal force from Kepler's laws. In the figure of the orbit, where the lines are indicated by small letters, the planet is at P and the sun occupies the focus S. The small deviation of the planet's motion from the tangent towards the focus is denoted by e, the motion itself by s. The deviation is proportional to the force and to the square of the time; so the force is found by dividing the deviation e by the square of the time interval. Because of the law of areas the time interval may be replaced by the area described by the radius vector. By taking the time interval and the motion s ever smaller the area can be rendered ever more exactly by the triangle SPQ. Newton derives that PE = a, half the major axis.

Dropping a perpendicular p from Q to the radius vector and a perpendicular h from P to b' (2a' and 2b' are conjugate diameters), we have area SPQ = 1/2 hP; because of the similarity of the triangles PQV and PEW, we have p : h = s : a or p = h × s/a; h = ab' : b'; hence for the area we find 1/2 s (b : b').

The deviation e is related to the small distance d on the diameter by e : d = a' : a. For the distance s we have, by considering the ellipse as the projection of a circle, the relation e × 2a' : s² = a'² : b'² so that e = 1/2 a'²/b'²; d = ba²/b'².

Then the force is

\[ \frac{1}{2} \frac{a'^2}{b'^2} \frac{s^2}{b'^2} \]

Here all the quantities depending on the position of the planet in its orbit have disappeared. So for all the points of the ellipse the force is as the inverse square of the distance to the sun.
A HISTORY OF ASTRONOMY

REFERENCES


2. Ibid., p. 245.

3. Ibid., p. 245.


15. Ibid., p. 21.

16. Ibid., p. 77.

17. Ibid., I (1907), p. 64.

18. Ibid., p. 45.

19. Ibid., p. 71.

20. Ibid., p. 77.


22. Ibid., p. 91.

23. Ibid., p. 97.


26. Ibid., II, pp. 534-539.

27. Kugler, Die babylische Mondrechnung (Freiburg, 1900), pp. 57-82.


32. Ibid., p. 299.

33. Ibid., p. 312.

34. Ibid., p. 336.

35. W. Eberhard and R. Henseling, 'Beiträge zur Astronomie der Han Zeit', Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phil.-Hist. Klasse, V (1933) and XXIII (1933).


37. Ibid., XXXVII, 25-31.


41. See also O. Neugebauer, The Exact Sciences in Antiquity (Copenhagen, 1951), p. 136.

42. Plato, Republic, VII, A-B, 589C-590B.

43. Plato, Epinomis, 590.
REFERENCES

153. Ibid., p. 430–32.
154. Ibid., p. 438.
156. Ibid., p. 457.
163. Ibid. (Letter of February 23, 1668/9), p. 68.
164. Voltaire, Lettres sur les Anglais (Oeuvres de Voltaire, 1789), XXIV, p. 67.
165. Æ. F. F. Tisserand, Traité de Mécanique céleste, III (Paris, 1894), p. 64.
166. Ibid., III, p. 76.
169. R. Grant, op. cit., p. 60.
171. Ibid., p. 4.
172. R. Grant, op. cit., p. 61.
177. Ibid., I, p. 92.
178. Ibid., I, p. 90.
179. Ibid., I, p. 156.
180. Ibid., I, p. 293.
181. Ibid., I, p. 245.
184. Ibid., I, p. 242.
185. Ibid., II, p. 213.
186. Ibid., II, p. 487.
187. Ibid., II, p. 533.
198. Ibid., p. 588.
199. Ibid., p. 591.
A HISTORY OF ASTRONOMY

Three-body problem, 299
Three-staff, 120, 280-2
Three Terrae, 180
Thiessen, H., 187
Thiele, H., 156
Thiele, E. W., 254
Thiessen, W., 434
Thiessen, W., 444
Thiessen, W., 454
Thiessen, W., 464
Thiessen, W., 474
Thiessen, W., 484
Thiessen, W., 494

INDEX

White dwarfs, 434, 457, 466
Wickert, Emil, 324
Wien, W., 414
Wildt, Rupert, 392, 416
Wilhelm IV von Heesen, 208
Wilming, J., 390, 461
Wilson, Alexander, 403
Winkler, Hugo, 29-30
Witt, Gustav, 346
Witt, Jan de, 340
Wolf, C., 454
Wolf, Max, 354, 475, 485
Wolf, Rudolf, 404
Wren, Christopher, 263
Wright, Thomas, 316
Wright, W. H., 360, 463
Wurm, K., 477

Xenophanes, 99

Yang-Hiong, 91

Zeells Observatorium, 333, 349, 412, 431
Young, C. A., 408, 410
Yu-Hsi, 92

Zach, F. X. von, 344, 359
Zachariassen, Hans, 253
Zacuto, 184, 185
Zarqala, 168
Zanetta, H., 462
Zeeman effect, 412
Zeiss, Carl, 336
Zenith, 174
Zenith sector, 289-90; Pl. 6
Zodiac, zodiacal signs, 41, 64, 84, 90, 106, 161
Zodiacal light, 422
Zöllner, E., 334-7, 423, 446, 449
Zone work, 336, 482
Zwick, F., 495
A CATALOG OF SELECTED DOVER BOOKS IN SCIENCE AND MATHEMATICS
A CATALOG OF SELECTED DOVER BOOKS

IN SCIENCE AND MATHEMATICS

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V. V. Nemytskii and V. V. Stepanov. Classic graduate-level text by two prominent Soviet mathematicians covers classical differential equations as well as topological dynamics and ergodic theory. Bibliographies. 523pp. 5% x 8%. 65954-2 Pa. $10.95

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip Barker. Basic textbook covers theory of matrices and its applications to systems of linear equations and related topics such as determinants, eigenvalues and differential equations. Numerous exercises. 432pp. 5% x 8%. 66014-1 Pa. $10.95

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text presents the quantum theory in terms of qualitative and imaginative concepts, followed by specific applications worked out in mathematical detail. Preface. Index. 655pp. 5% x 8%. 65969-0 Pa. $14.95

ATOMIC PHYSICS (8th edition), Max Born. Nobel laureate’s lucid treatment of atomic structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp. 5% x 8%. 65984-4 Pa. $12.95


A SHORT HISTORY OF CHEMISTRY (3rd edition), J.R. Partington. Classic exposition explores origins of chemistry, alchemy, early medical chemistry, nature of atmosphere, theory of valency, laws and structure of atomic theory, much more. 428pp. 5% x 8%. (Available in U.S. only) 65777-1 Pa. $11.95

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully reasoned study covers such topics as Ptolemaic theory, work of Copernicus, Kepler, Newton, Eddington’s work on stars, much more. Illustrated. References. 521pp. 5% x 8%. 65994-1 Pa. $12.95

PRINCIPLES OF METEOROLOGICAL ANALYSIS, Walter J. Sauier. Highly respected, abundantly illustrated classic reviews atmospheric variables, hydrostatics, static stability, various analyses (scalar, cross-section, isotropic, isentropic, more). For intermediate meteorology students. 454pp. 6% x 9%. 65979-8 Pa. $14.95

PRINCIPLES OF QUANTUM CHEMISTRY AND PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems, detailed solutions in coverage of quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems plus 139 supplementary exercises. 430pp. 6% x 9%. 65236-X Pa. $15.95

RELATIVITY, THERMODYNAMICS AND COSMOLOGY. Richard C. Tolman. Landmark study extends thermodynamics to special, general relativity; also applications of relativistic mechanics, thermodynamics to cosmological models. 501pp. 5% x 8%. 65383-8 Pa. $13.95

APPLIED ANALYSIS, Cornelius Lancos. Classic work on analysis and design of finite processes for approximating solution of analytical problems. Algebraic equations, matrices, harmonic analysis, quadrature methods, much more. 559pp. 5% x 8%. 65666-X Pa. $13.95

AN INTRODUCTION TO THE PHILOSOPHY OF SCIENCE, Rudolf Carnap. Stimulating, thought-provoking text clearly and discerningly makes accessible such topics as probability, structure of space, causality and determinism, theoretical concepts and much more. 320pp. 5% x 8%. 65818-6 Pa. $8.95

INTRODUCTION TO REAL ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessible coverage of set theory, real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, more. Wide range of problems. Undergraduate level. Bibliography. 254pp. 5% x 8%. 65608-3 Pa. $7.95

INTRODUCTION TO QUANTUM MECHANICS With Applications to Chemistry, Linus Pauling & E. Bright Wilson. Jr. Classic undergraduate text by Nobel Prize winner applies quantum mechanics to chemical and physical problems. Numerous tables and figures enhance the text. Chapter bibliographies. Appendices. Index. 468pp. 5% x 8%. 64871-0 Pa. $11.95


MATHMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel. Analyzes models of fluid flow and solid deformation. For upper-level math, science and engineering students. 608pp. 5% x 8%. 65609-2 Pa. $14.95

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers fundamental concepts, real number system, point sets, functions of a real variable, Fourier series, much more. Over 500 exercises. 552pp. 5% x 8%. 65385-4 Pa. $10.95

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg. Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8%. 60113-7 Pa. $5.95

INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S.V. Fomin. Translated by Richard A. Silverman. Self-contained, evenly paced introduction to real and functional analysis. Some 550 problems. 405pp. 5% x 8%. 61226-0 Pa. $10.95

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems, detailed solutions in coverage of quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems plus 139 supplementary exercises. 430pp. 6% x 9%. 65236-X Pa. $15.95

CATALOG OF DOVER BOOKS
CATALOG OF DOVER BOOKS

ASYMPTOTIC METHODS IN ANALYSIS, N.G. de Bruijn. An inexpensive, comprehensive guide to asymptotic methods—the pioneering work that teaches by explaining worked examples in detail. Index. 224pp. 5% × 8%. 64221-6 Pa. $6.95

OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J.H. Eberly. Clear, comprehensive introduction to basic principles behind all quantum optical resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% × 8%. 65538-4 Pa. $8.95

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying complex algebra till harmonic functions have been analyzed from real variable viewpoint. Includes problems with answers. 364pp. 5% × 8%. 61309-7 Pa. $8.95

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of best introductions; especially for specialist in other fields. Treatment is physical rather than mathematical. 80 illustrations. 257pp. 5% × 8%. 60113-6 Pa. $6.95

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of fundamentals of analytic function theory—plus lucid exposition of five important applications: Potential Theory; Ordinary Differential Equations; Fourier Transforms; Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at chapter ends. 512pp. 5% × 8%. 64770-X Pa. $12.95

ULTRASONIC ABSORPTION: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids, A.B. Bhatia. Standard reference in the field provides a clear, systematically organized introductory review of fundamental concepts for advanced graduate students, research workers. Numerous diagrams. Bibliography. 440pp. 5% × 8%. 64917-2 Pa. $11.95


LIGHT SCATTERING BY SMALL PARTICLES, H.C. van de Hulst. Comprehensive treatment including full range of useful approximation methods for researchers in chemistry, meteorology and astronomy. 44 illustrations. 470pp. 5% × 8%. 64228-3 Pa. $11.95

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid, insightful book presents ideal coverage of subject. 354 exercises make book perfect for self-study. 55 figures. 352pp. 5% × 8%. 64025-6 Pa. $9.95

OPTICKS, Sir Isaac Newton. Newton's own experiments with spectroscopy, colors, lenses, reflection, refraction, etc., in language the layman can follow. Foreword by Albert Einstein. 352pp. 5% × 8%. 60206-2 Pa. $11.95

GENERALIZED INTEGRAL TRANSFORMATIONS, A.H. Zemanian. Graduate-level study of recent generalizations of the Laplace, Mellin, Hankel, K. Weinerstrass, convolution and other simple transformations. Bibliography. 320pp. 5% × 8%. 65376-7 Pa. $8.95

THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive undergraduate text covers basics of electric and magnetic fields, builds up to electromagnetic theory. Also related topics, including relativity. Over 900 problems. 768pp. 5% × 8%. 65660-8 Pa. $18.95

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valuable addition to the literature on the subject, moving clearly from subject to subject and theorem to theorem. 107 problems, answers. 336pp. 5% × 8%. 63317-9 Pa. $8.95

THEORY OF ELECTROMAGNETIC WAVE PROPAGATION, Charles Herach Papas. Graduate-level study discusses the Maxwell field equations, radiation from wire antennas, the Doppler effect and more. xiii + 244pp. 5% × 8%. 65678-0 Pa. $6.95

DISTRIBUTION THEORY AND TRANSFORM ANALYSIS: An Introduction to Generalized Functions, with Applications, A.H. Zemanian. Provides basics of distribution theory, describes generalized Fourier and Laplace transformations. Numerous problems. 384pp. 5% × 8%. 65479-6 Pa. $11.95


CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing. Applications-oriented introduction to variational theory develops insight and promotes understanding of specialized books, research papers. Suitable for advanced undergraduate/graduate students as primary, supplementary text. 352pp. 5% × 8%. 64856-7 Pa. $8.95


AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox. Graduate-level text covers variations of an integral, isoperimetrical problems, least action, special relativity, approximations, more. References. 279pp. 5% × 8%. 65499-0 Pa. $7.95

HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar. Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of instabilities causing convection. 704pp. 5% × 8%. 64071-X Pa. $14.95

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering isoperimetrical problems, theory of elasticity, quantum mechanics, electrod statics, etc. Exercises throughout. 320pp. 5% × 8%. 63069-2 Pa. $8.95

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced students of ground water hydrology, soil mechanics and physics, drainage and irrigation engineering and more. 335 illustrations. Exercises, with answers. 784pp. 6½ × 9¼. 65675-6 Pa. $19.95
CATALOG OF DOVER BOOKS

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard Hamming. Classic text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, other topics. Revised and enlarged 2nd edition. 721pp. 5% × 8%. 65241-6 Pa. $15.95


OPTIMIZATION THEORY WITH APPLICATIONS, Donald A. Pierre. Broad-spectrum approach to important topic. Classical theory of minima and maxima, calculus of variations, simplex technique and linear programming, more. Many problems, examples. 640pp. 5% × 8%. 65209-6 Pa. $11.95

THE CONTINUUM: A Critical Examination of the Foundation of Analysis, Hermann Weyl. Classic 20th-century foundational research deals with the conceptual problem posed by the continuum. 156pp. 5% × 8%. 67982-9 Pa. $5.95

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. Two classic essays by great German mathematician: on the theory of irrational numbers; and on transfinite numbers and properties of natural numbers. 115pp. 5% × 8%. 21010-3 Pa. $5.95

THE FUNCTIONS OF MATHEMATICAL PHYSICS, Harry Hochstadt. Comprehensive treatment of orthogonal polynomials, hypergeometric functions, Hill's equation, much more. Bibliography. Index. 322pp. 5% × 8%. 65214-9 Pa. $9.95

NUMBER THEORY AND ITS HISTORY, Oystein Ore. Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, much more. Bibliography. 380pp. 5% × 8%. 65620-9 Pa. $9.95

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos. Graduate level coverage of calculus of variations, equations of motion, relativistic mechanics, more. First inexpensive paperback edition of classic treatise. Index. Bibliography. 418pp. 5% × 8%. 69067-7 Pa. $11.95

MATHEMATICAL TABLES AND FORMULAS, Robert D. Carmichael and Edwin R. Smith. Logarithms, sines, tangents, trig functions, powers, roots, reciprocals, exponential and hyperbolic functions, formulas and theorems. 269pp. 5% × 8%. 60111-0 Pa. $6.95

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview covers essential math, mechanics, electromagnetic theory, thermodynamics, quantum mechanics, nuclear physics, other topics. First paperback edition. xxxii + 885pp. 5% × 8%. 65227-0 Pa. $19.95

CATALOG OF DOVER BOOKS

HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, GRAPHS, AND MATHEMATICAL TABLES, edited by Milton Abramowitz and Irene A. Stegun. Vast compendium: 29 sets of tables, some to as high as 20 places. 1,046pp. 8% × 10%. 61722-4 Pa. $24.95

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING, John W. Dettman. Algebraically based approach to vectors, mapping, differentiation, other topics in applied math. Also generalized functions, analytic function theory, more. Exercises. 488pp. 5% × 8%. 65649-7 Pa. $10.95


TENSOR ANALYSIS FOR PHYSICISTS, J.A. Schouten. Concise exposition of the mathematical basis of tensor analysis, integrated with well-chosen physical examples of the theory. Exercises. Index. Bibliography. 289pp. 5% × 8%. 65582-2 Pa. $8.95

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F.B. Hildebrand. Classic, fundamental treatment covers computation, approximation, interpolation, numerical differentiation and integration, other topics. 150 new problems. 669pp. 5% × 8%. 65563-3 Pa. $15.95

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion and evolving elementary theory. Notes by R. Fürth. 122pp. 5% × 8%. 60304-0 Pa. $4.95


AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L. Hill. Excellent basic text offers wide-ranging coverage of quantum statistical mechanics, systems of interacting molecules, quantum statistics, more. 525pp. 5% × 8%. 65212-4 Pa. $12.95


CATALOG OF DOVER BOOKS

ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry Pollard. Exhaustive survey of ordinary differential equations for undergraduates in mathematics, engineering, science. Thorough analysis of theorems. Diagrams. Bibliography. Index. 818pp. 5% x 8%. 64940-7 Pa. $18.95

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill. Standard text covering fundamentals of statistical mechanics, applications to fluctuation theory, imperfect gases, distribution functions, more. 448pp. 5% x 8%. 65390-0 Pa. $11.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An Introduction, David A. Sánchez. Brief, modern treatment. Linear equation, stability theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 8%. 65382-6 Pa. $5.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory, George Gamow. Lucid, accessible introduction to influential theory of energy and matter. Careful explanations of Dirac's anti-particles, Bohr's model of the atom, much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 65689-4 Pa. $6.95

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, non-singularity and inverses in connection with the development of canonical matrices under the relation of equivalence, and without the intervention of determinants. Includes exercises. 237pp. 5% x 8%. 66810-X Pa. $7.95

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton's laws of motion, Chadwick's study of the neutron, Hertz on electromagnetic waves, more. Original accounts clearly annotated. 370pp. 5% x 8%. 25346-5 Pao $10.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH APPLICATIONS, E.C. Zachmanoglou and Dale W. Thoe. Essentials of partial differential equations applied to common problems in engineering and the physical sciences. Problems and answers. 416pp. 5% x 8%. 65251-3 Pa. $10.95

BURNHAM'S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide to the stars beyond our solar system. Exhaustive treatment. Alphabetical by constellation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and Pavo to Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2000pp. 5% x 8%. 65465-6 Pao $16.95

CATALOG OF DOVER BOOKS

SPECIAL FUNCTIONS, N.N. Lebedev. Translated by Richard Silverman. Famous Russian work treating more important special functions, with applications to specific problems of physics and engineering. 38 figures. 308pp. 5% x 8%. 60624-4 Pa. $8.95

OBSERVATIONAL ASTRONOMY FOR AMATEURS, J.B. Sidgwick. Mine of useful data for observation of sun, moon, planets, asteroids, aurorae, meteors, comets, variables, binaries, etc. 59 illustrations. 384pp. 5% x 8%. (Available in U.S. only) 24035-9 Pa. $8.95

INTEGRAL EQUATIONS, F.G. Tricomi. Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Volterra Equations, Fredholm Equations, much more. Advanced undergraduate to graduate level. Exercises. Bibliography. 238pp. 5% x 8%. 64828-1 Pa. $7.95


MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical solution of problems; covers seven types of equations. "... a welcome contribution to the existing literature. ..."—Math Reviews. 490pp. 5% x 8%. 64252-1 Pa. $11.95

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach developed by U.S. Air Force Academy. Designed as a first course. Problems, exercises. Numerous illustrations. 455pp. 5% x 8%. 60061-0 Pa. $9.95

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS, John W. Denman. Excellent text covers complex numbers, determinants, orthogonal bases, Laplace transforms, much more. Exercises with solutions. Undergraduate level. 416pp. 5% x 8%. 65191-6 Pa. $10.95

INCOMPRESSIBLE AERODYNAMICS, edited by Bryan Thwaites. Covers theoretical and experimental treatment of the uniform flow of air and viscous fluids past two-dimensional aerofoils and three-dimensional wings; many other topics. 654pp. 5% x 8%. 65465-6 Pao $16.95

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Exceptionally clear exposition of important discipline with applications to sociology, psychology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8%. 65084-7 Pa. $8.95

LAMINAR BOUNDARY LAYERS, edited by L. Rosenhead. Engineering classic; covers steady boundary layers in two- and three-dimensional flow, unsteady boundary layers, stability, observational techniques, much more. 708pp. 5% x 8%. 65646-2 Pa. $18.95

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY, Second Edition, Dirk J. Struik. Excellent brief introduction covers curves, theory of surfaces, fundamental equations, geometry on a surface, conformal mapping, other topics. Problems. 240pp. 5% x 8%. 65699-8 Pa. $8.95