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of the photosphere, which will lift the ionized Ba
atoms, by absorption of X 4934 or 4554 into one of
the 2P states; then it appears probable that the Ba +
atom in this state will be less likely to recombine
than one in the .S state. For sodium this influence
must be very much smaller, in the first place be-
cause the enhanced lines of sodium lie in the extreme
ultraviolet, beyond 1 377, where the radiation of
the photosphere is probably insensible, so that the
sodium atom, once ionized, is not further disturbed
by sunlight (Aszroplh. Journ. 55, 356—57).

Now our analysis shows that this explanation
of the discrepancy cannot be right. The existence
of higher quantum states of the ionized atom in
the case of thermal equilibrium certainly increases
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the rate of ionization by the well known factor
O (T)=¢qg:. + g, —Ca—x2) IFT + . . . .. ; but the
second term is far too small to have any sensible
influence. In the case of photospheric radiation our
formula shows that the case is hardly different, the
exponential expression being */,,, instead of /...
Moreover the formula shows that the deviation from
the isothermal case becomes greater for smaller wave-
lengths, because the anisotropic radiation from below
has the short wavelength side of the spectrum stronger,
the long wavelength side fainter, than an isotropic
radiation of the same total intensity; thus the Na +
atoms with lines in the far ultraviolet must show
the influence of the photospheric radiation even more
strongly than the Ba + atoms.

On the images by an irregular coarse grating, by 4. Pannekoes.

Extrafocal images formed by a coarse grating before
the objective have been proposed by HERTZSPRUNG
as an expedient for fundamental photographic photo-
metry. The ratherlarge irregularities found by measure-
ment in the grating used for photometric work at the
Bosscha Observatory, Lembang, showed the desirability
of investigating the influence of such irregularities on
the photometric results.

We suppose only variations in one dimension z;
physically this corresponds to strict parallelism of all
the limits between the dark and bright spaces, and to
a rectangular aperture. The average breadth of the
dark spaces is &, of the bright spaces /; the average
value of a period is LZ =/ + 4, their number is 7. The
deviations of the real limits from an ideal grating,
where the breadth is everywhere exactly & and /, are

C:é—ri—|—sin(r.p—et)—-sin(n[¢+52)—I—Siﬁ(u,b——s3)—sin(np—[-s4)+...

L .
= sin d

L
COS €, — COS €5 + COS €, — COS €, + ... | — — COS
* 3 + 27

€; €, . .. ¢, then by our definitions ¢, +¢, + ... e,, =0

é;:—e€,+e;—e,+ ... —€y=0.
If we put for the amplitude integrals
xo . xa
f cos 2m - a’x:Cand[ sin 27 ~~- dxr = S, the

integrals being taken over the whole of the bright
spaces, then the intensity at a distance af from the
central image will be given by /= (* + S° For the

X

A

first diffraction image «, = A/L. Putting 2=m

x L L.
= 2m ==9, we have C:Efcosqdcp, S:—Z?fsmcpa’cp.

Putting */, ((—d)|L = {y/n and 2me¢/L =, the limits of
the integrals are

—{teton+Pte, ; 2n—dFeto3m+d4e, ;.
etc., and the integrals become

sine, 4+ sin¢, + ... §

S:zL—n%—cos(up—el)-—cos(xp+52)—~cos(q)—53)—cos(\b+e4)—...E

L
_—Ecosup

If the deviations ¢ are not large, such that ¢ may
be neglected, while the second term of each formula
disappears because 2¢ =0 and X (¢; —¢,) = O, then

L sinupg . . . %
C_EE > e® + ¢, e3A+..‘.’
S———L OSLI);Z?Z—-I (e + &2 + )

= %c ‘ [z &z -

In the intensity /= C* + S* the first term becomes
of the 4 order and unless cos{ is very small, i.e.

COS €; + COS €, + cose; + ...

L in {1 sin sin e, + §
— s €, —
ZTE I 2

the wires are very thin compared with the bright
spaces, may be omitted. Putting Z¢* =2 7 p? (thus p
being the mean value of the deviations) we get

S:—ﬁ;cosq.l(l—‘/“u?) and

n* L?
7:2

=

cos? ¢ (1 —p?).

In this deduction it is not supposed that the de-
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viations ¢ and ¢ behave as accidental errors; they may
show any systematic course up and down.

The intensity at the central image is found in the
same way (cos ¢ being 1) /. =#® /%, and the intensity
without grating /, =#»* L*. Thus

IjI,=1[n*.cos* Y (1—p?) and ][, =L|L*=(*[,+ ¢/“)2'

For the second and the higher diffraction images
(e=2 AL, 3)/L, etc.) the limits of the integrals become
twice, 3 times, etc. the former values; we find

Ll l,=1]r*.sin* 2 (1—4p?); 1,1, =1[n%.cos? 3¢ (1—gu?).

For equal breadth of the bright and the dark spaces
7, vanishes. The brightness of all these diffraction
images is diminished in consequence of the irregular-
ities in the breadth of the dark and the bright spaces.

Since, however, the light that is lacking in these
images, must be dispersed somewhere else in the focal
plane beside them, it may be that part of it is gathered
up in the extrafocal images. The brightness in the
centre of an extrafocal image is determined by the
sum total of the light falling in the focal image within
a circle of the size of the extrafocal image around
this centre. Thus the distribution of the light in the
focal plane (coordinate «) must be determined.

We consider a point at the outer (or the inner)

. . . . . v
side of the first diffraction image at dlstance; o;

then the phase angle 2= xx_ <I + :—Z> 9, and the

limits of the integrals over the bright spaces are

——41—{—51,7:(1-{—%) +d e, 211(1—{—%)—4}-{—23, etc.

We will take U =o0 in order to avoid complicated
formulas. The integrals now become

C,:—igsin ax+sin<£7-r—|—52>+sin<2—yﬂ+s3>+....}
2T ” n

. L /4 27
S, =—— cose,+cos<—7r +82>+C05<—TE+€3> +§
2m 7 7

Since there are 27 terms, the periodic argument
goes # times through the circumference 2.

We suppose the deviations ¢ small; thus the for-
mulas may be written, neglecting the terms with e

c—_~L
2T

rT 27T
€+ € COS — + ¢ cos—-{-...s
n n
Li
Sr=t o0

Now the 2z values ¢,...¢, can always be repres-
ented by a Fourier series
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ST 25T (n—1)sm
Esp1 — @o+a; COS— +a, COS— +...&,_, COS——
, 7 7 n
. ST . 28T . (n—1)sm
+6, sin — + b, sin — +...0,_;sin (—>
n

Introducing these values in the formulas for C, and
S, the coetficient of each @ or & becomes a series of
trigonometric products whose sum total is zero, except
for @, and 4, where it is a sum of 2z squares of
sinus or cosines, evenly distributed over the circum-
ference.

The value of this sum is #; thus we have

C,—=— £ na,and S, =+ £ nb, and the intensity
2m 2m

2

. . L
at this point 7, =
4m*

n? (a2 + 6,).

Thus proceeding from the place of the first dif-
fraction image to that of the second one with 7 equal
steps, we find intensities just corresponding to the
squares of the amplitudes of the consecutive Fourier
terms up to the #th, the mechanism of diffraction
performing here the harmonic analysis of the ¢ values.
The same values we find at the other side, from the
first diffraction image towards the central one. The
diffraction figure of the central image and each of
the others, caused by the whole aperture, corresponds
in size to one of these steps. Thus it is easily seen
that between the points taken above the intensities
have intermediate values.

If we are able to collect the sum total of these
intensities into one image, it will have the brightness

2

27, =2X iz n® (Za®+ 26,%).
4m

Now we have See=nCa®+ 25°;
Lz

thus 27 =

”2
2 — 2 2
ﬂzzsze _;L w.

This is exactly the amount by which 7 was dimin-
ished in consequence of the irreguldrities; thus in
such an image extending from the centre to the place
of the second diffraction image the whole theoretical
intensity would be collected, just as if there were no
irregularities.

But we are not able to collect all this light into
a single image. In applying this method the extra-
focal central and first diffraction images are just
separated; thus the irregularly dispersed light is only
gathered up at most as far as *[,#; -the higher
coefficients au,, to @, and &y, to &, are even contri-
buting to the extrafocal central image.

We can make an estimate of the values of these
two groups of terms by computing the means and
the differences of every two consecutive values of ¢:

© Astronomical Institutes of The Netherlands ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/abs/1926BAN.....3..209P

BBAN. - ©.0. 73 Z09P0

rt

B. A.N. 110.

& =2 (a,cos 759+ b, sinrso);
G =2(a cos7(s+ 1)o+ b, sin7 (s+ 1)9)
(st e) =2 a,cos(s+*,)rocos*/, 7o+
+ 26, sin(s+*[,)rgcos .7 ¢
o (spr —e) =2 a,sin(s+ )7 ¢sin’,r o+
+ 2 b, cos(s+*[,)rosin*/, 7o

ngx""_l_ e (@, + 0,*) cos* *[, 7 ©

2
Z €:+1_+8s
2

}2 —n3 (a2 + b7 sin* [, 7 0.

Here the square amplitudes (2* 4 4%) are multiplied
with factors, which for » =1 to- # decrease from
1 to o for the means, increase from o to I for the
half differences. Separating them into the groups
»=1 to *[,n, and *[, n to », the coefficients in these
groups are for the means I to */,, (average 0.82)
and *[, to o (av. 0.18), for the half differences o to */,
(average 0.18) and */, to 1 (average 0.82). Thus
putting

3 <§+,TM>2 —27(0.82 1" 4+ 0.18 p.%)
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S, <e‘+’T_E‘> =27 (0.18 p,” + 0.82 p,?),

Yor
2 u,” may be taken for 2 (2 + £%), and 2 p,* for
3 (@ + ).

Yore

Then the light collected in the first diffraction image
will be '

n? L?

I="="Jeos” 4 (1—p2) + p?
. n? L*?
and the central image /, = n® /% + - u.?; thus

== fcost§ (1 — ) + 2| L= F|L 4 e

Since as a rule the large values of ¢ will appear
in the longer waves, we may expect that p,* will not
differ very much from p®, and p,*> will be small
But only exact measures of the grating can decide
whether the deviation from the simple theory is
relevant.
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