
Astropbysics. - The Central Intensity in the Fraunhofer Lines. By 
A. PANNEKOEK. 

(Communlcated at the meeting of December 19. 1931). 

1. In our paper "The Theoretical Con tours of Absorption Lines"l) it 
was stated that there is a marked contradiction between the observed 
contours of absorption lines and the theoretical results derived on the 
basis of the most plausible assumptions on steIl ar atmospheres. Whereas 
theory demands an intensity zero (i.e. below one percent) in the centre 
of a line. the observed central intensities are from 0.07 upward to several 
tenths. The different causes for broadening. considered in that paper. 
cannot explain why for the bulk of the Fraunhofer lines in the solar 
spectrum the central intensity should not be practically zero. The expla­
nation by means of collisions. given by UNSÖLD and used also by 
WOOLLEY. rests on the use of approximate formulae. which assume a 
constant density throughout the absorbing layers. Owing to the very 
high value of the monochromatic absorption coefficient in the centre of 
a line only the upper layers of the atmosphere. where collisions do not 
play any part. determine the central intensity. 

An explanation may be found. however. if in some way light from 
the wings could be transferred to the centre. In the wings the intensity 
has all values between the full background brightness and zero; the 
atoms producing the line absorb th is winglight. are Iifted to a higher 
energy level and must in faIIing back re-emit this energy. In the existing 
discussions. however. it was always assumed that the excited atom re-emits 
radiation of the same wave-Iength as had previously been absorbed. 
just as if it remembered by what means it came into the higher level. 
So the equations for each wave-Iength. used in deriving the resulting 
intensities. were quite independent of other wave lengths. 

Recently a mutual influence of different wave lengths in the realm of 
a line has been inferred by O. HALPERN 2) from the classical formulae 
of resonance. IE the incident light of a frequency }' somewhat deviating 
from the proper frequency of the resonator }IQ. consists of single finite 

I) Monthly Notices R. A. S. 91. p. 139 (1930\. 
2) Zeitschr. f. Physik 67. S. 523 (1931). 
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or damped wave-trains. it can be resolved by FOURIER analysis into a 
broadened band. decreasing with increasing wave-length differeuce; each 
separate wave-length in this band produces forced vibrations of the 
resonator. and it appears that the intensity of these induced vibrations 
has two marked maxima. one for frequency J' and another for 1'0 ' In 
a different way R. VAN DER RI ET WOOLLEY I) came to the same result. 
by making use of the model description of the resonance broadening of 
the lines. assuming the energy levels themselves broadened. We have 
to assume in this model that within a broadened level (here ca lied a 
state of the atom) the weight of each special level depends on 6,v in 
the same way as the absorption and diffusion coefficient in ordinary 
theory depends on 6,1'. i.e. shows the same strong co re and the same 
wings. decreasing with 1/6, J, 2. Then from each level in the lower state I 
the probability of being lifted to some level of the higher state II is 
proportional to the product of their weights . A beam of light of central 
frequency J'o is absorbed practically only by the mean lower level Ia. from 
which the atoms are lifted to the mean higher level Ilo; they return 
mostly to Ia. emitting J'o. and for a small part to deviating lower levels 11, 

emitting wing frequencies J'I' A beam of light of wing frequency J' I is 
absorbed with a smaller chance by 10' lifting the atoms to the deviating 
higher level lIl, and is absorbed with the same chance by 1-1 lifting 
these atoms to the mean level Ilo . For both cases the atoms return with 
dominant chance to 10 ; in the flrst case 1'1 is emitted. in the second 
case 1'0' Hence radiation of some wing frequency af ter absorption is 
emitted half as radiation of the same frequency and half as radiation of 
normal frequency . At the same time of the radiation absorbed of 
normal frequency the greater part is emitted in the same frequency and 
a small part is distributed over the wing frequencies. 

Quantum mechanics assigns different resonance coefficients to the 
different states of an atom; each of them is proportional to the sum 
total of the transition probabilities from this state. i.e. inverse proportional 
to its average life time. Then the absorption coefficient for a wing 
frequency is determined by the resonance coefficients of the lower and 
the up per state. added together. in accordance with W EISSKOPf and 
WIGNER's result . The absorbed energy is divided into two unequal parts ; 
the part emitted as norm al frequency is produced by the wings of the 
lower state only. and the part re-emitted in the same frequency depends 
on the wings of the upper state . 

I t seemed worth while to consider the bearing of these theoretical 
ideas upon the explanation of the central intensity in the Fraunhofer 
lines. In view of the complications introduced by the mutual influence 
of the different radiations we are obliged to assume a simplifled model 
of the mechanism of formation of the line. We cannot make use of the 

I) Monthl y Notices R . A . S . 91. p. 977 (1931) . 
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exact formulae . which take account of the varia dons in density and in 
absorption coefficient with depth . because they can be only solved by 
numerical integrations. We will assume an atmosphere of constant density. 
where the coefficients of absorption and diffusion have the same ratio 
in all ' the layers; moreover we neglect the increase of the absorption 
coefficient in the cent re of the line due to collisions of excited atoms. 
For the case of each wave-leng th independent of the others we have 
then the formulae given by MILNE I). We have to modify them according 
to our case of mutual influence . 

2 We assume the core of the absorption line to have a certain width 
/IJ and a constant high diffusion coefficient 50' For the wings we have in 
the two states mllch sma ller coefficients SI. S2. decreasing with increasing 
distance to the centre. Af te r a wave-Iength J'o of the core has been 
absorbed by a laye r of a toms. this energy is distributed in the re-emission 
over the whole width of the line. each wave-Iength taking part in ratio 
of its s . Wh en a wave- leng th of the wing has been absorbed (5 = SI + S2)' 

the energy is emitted pa rtly as light of the same wave-leng th (S2) . partly 
(SI) as light of the centra l core. evenly distributed over the width of the 
core. The coefficient of general absorption is k: the intensities of the 
outward and inward strea ms of radiation are called IC) and 1'0 for a 
wave-Iength of the core. 11 and 1'1 (fllnctions of l) for a wave-leng th 
of the wing . The tota l a mount of absorbed energy of the central 
wave-Iengths in the layer dx is (50 + k) (Jo + 1'0) w dx; the part with k 
is transformed into heat ; the res t is di s tributed over the line in such a 
way that each receives 

50 or SI I 
- --. - 50 (Ia + I 0) /IJ dx. 

saw +.J sldJ. 

The energy of wing light absorbed in th is layer amounts to 

of which the k part aga in is tra nsformed into heat. From the rest each 

wave-Iength in the co re receives d x f'SI (II + I'I) dl. and each wave­
w 

leng th in the wing receives from its own absorbed energy S2 (11 + I'I)' 
Hence the equations fo r the streams of energy are (x counted downward) 

I) Month ly N o tices R . A . S . 89. p . 7 
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~:=- (so+ k) 1'0+ 2~v f~,(l, +l'ddJ. -H -- 5
0

, - 50 u, (lo + 1'0) + kE I 
• sow~j s,dJ. 

(I) 

As in our former papers we put 1 +- I' = y (mean stream density), 
1- I' = z (net outward stream); by adding and subtracting we nnd 

dyo - ( ' k) dx - 50 Î Zo . (2) 

. (3) 

Multiplying the first of these equations (3) with w , integrating the 
second af ter 2, and adding and subtracting the results, we have 

+ 2kE(j'd;,-W) 



We put 
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(s,dJ. I 
So t~ +. (S,dJ. So = S 

11 = (2S-j-k) W YO- .J(2S, + k)y,d), 

v = kwyo + k.j·Y , dl. 

Then we have 

d . 
d: = (2 S + k) (so-(" k) WZo - . j (s + k)(2s, + k) ZI dJ, 

~: = k (so + k) wzo+ k. j '(s+ k) Z I di. 

Again differentiating and substituting (4) and (5) we flnd 

where 

a 2 = t (2 S + k)(so+ k) + t(s+ k) (2s l + k) 
-------

b 2 = t (2 S + k) (so + k) -- t (s + k) (2s 1 + k) 

and the mean values a re denned by 

. (5) 

~+kj~1 dj. • j(S+ k) ZI d}, ; (s+k)(2s~ +k). f~1 dj. .J (s + k) (2s j + k) ZI dj.. 

The values of the ne t stream ZI which act as the weights in averaging 
s are varia bIe with the depth ; hence in different layers the averaging is 
made with different weights and the resulting mean values are functions 
of the depth (with increasing depth the weight of the high values of s 
becomes smaller). We may . however. neglect th is variability. because it 
affects only small secondary terms in the coefficients. If we treat a 2 b2 c2 e 2 

as constant coefficients. the solution of the equations (6) presents no 
difficulty . Eliminating IJ we have 

~~~ - (a
2
+ e

2
) ~:~ + (a2

e
1
_ b

2
c

2
) (U+2kE CfdÀ-W)) + ( 

(8) 

-; ((b 2- a2).{d). + (b 2+a2
) W ) 2 k ~:~ = 0 ~ . 
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If we put 

the solution is 

u = Ae- p
,< + A ' ePX + Ce- qx + C' eqx 

- I 
- (D2_p2/(D2=q2) ~p2q2Crd.l.-w ) 2 kE + '. (10) 

+ ((b'-a'IJ dl + (b' +a'I w ) 2k ; :; ~ \ 
It is easily seen that by the condition of finite radiation at great 

depths the coefficients A ' and C' must vanish . For the particular solutions 
we have 

dE 
wh ere Eo and E 'o have been written for the values of E and dx at 

the surface. Putting now 
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we have 

+ 2 k 1-(~2 + C2) (pep~ ! ~e-pxdX+pe-".: j ;~ep" ' dX) + 
x 0 

- the same farm with q far p. 

+ 2k [(;~+ C2) (p2eP:j~e-px dX - p~e-p~j '~Eepx dX)-
x 0 . (\ 2) 

- the same farm with q far p . 

+ 2k [(~~ + C2) (p3el'~j~e-l'x dX + pJe- P: f'~epx dX - 2p2E) + 
x 0 

+ P2C2 ( Eo - ~o) e-
PX

] 

- the same farm with q far p. 

The nrst af the equatians (6) naw gives the value af v 

Since 

the terms with 2E vanish and we flnd 
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+ 2k P-2b2~~ l(~-~ + C2) (peP:J~e-pxdX+pe-p~r~epxdX ) + 
x 0 

+ C2 (Eo- ~o)e-pxJ 
- the same form with q for p ; I. 

(13) 
dv p2_ a2 q 2_a2 
dx = - P -----p-- Ae- px - q - --p- Ce- '1x + 

+ 2k p2 b~a2 [(;~ + C2) (p2eP:j~-px dx- p2e- px.{Eepx dX)-

x 0 

- PC2 ( Eo - ~'o) e- Px J 
- the same form with q for p . 

The boundary conditions in the deep interior are satis6ed by the 
vanishing of the terms with E. The boundary conditions at the surface 
determine the integration constants A and C. At the surface (where the 
quantities shall be denoted by the index 0) we have 

1 dyoo 
Yoo = Zoo • YIO = ZI O ; or Yoo - ~~ -- = 0 

50 + k dx 
1 dYlo 

YIO - s+k dx =0 

for each wave-length; for their assemblage we have 

Since 

IlO = (2 S + k) wYoo - 2s1 + k.f YIO dj, 

we find by sol ving 

dyoo duo ~. - - dvo 'I Nwyoo = kuo + (2s 1 +k) Vo ; Nw dx = k dx + 2s1 +k dx 

rv.{." dl = - kuO+ (25 +kl P, ; rv.t:~' dl - k ~~ + (25 +kl ~~ \ 
N = k(2S +k + 2sl + k) ! 

(15) 
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The mean values 2s1 + k occurring in these equations are constant 
surface values ; the weights are here the surface va lues YIO = ZIO' the 
observed intensities. 

The surface values of u and v and their derivates. ~hich must be 
introduced here. are found by taking x = 0 in the equations (i 2) and (13). 
By means of the quantities 

00 

(;1;1 + c2}f2k E e- P'< pdx = P 

o 

c, ( E, - ~ E',) = R I 
(16) 

(~12 + C2). f~2k E e- 4X qdx = Q C2 ( Eo - ~ E'o) = T \ 
o 

we can express them : 

Uo = (A + R + P) + (C- T-Q) 

dyo = p (- A - R + P) + q (- C + T-Q) 
dx I . . (i 7) 

By introducing the quantities : 

the surface conditions take the form 

q2_a2 J 
Po = k + (2s l + k) -p- -- ( 

fi l =-=- k+ (2S+ k) q2b2a2 \ 

110 I(A + R)(so + k + p) +- P(so + k - p) I + I 
+ f10 I(C - T)(so + k + q) - Q(so + k - q)! = 0 

I1d(A + R)(~--~ k + p) + P (s + k - p)l + ~ 

+ fÎ I!(C - T) (s + k + q)-Q(s + k - q}l = O , 

and the surface va lues of y. the emitted intensities. are given by 

. (18) 

. (19) 

Nw~oo = (la (A + R + P) + {Jo (C - T - Q) I 
~j Ylod}, = 11 1 (A + R+ P) + PI (C - T - Q), . 

. . (20) 



1361 

It appears that in eliminating the arbitrary constants A and C by 
means of (19) the quantities Rand T are eliminated at the same time. 
We flnd : 

1 - - - \ 
WYoo = ND h fi l- U It'io )l2 Pl10P (s+ k+ q) - 2q fJo Q(s+ k+ p) I J 

J
' 1 ( (21) 

, YlodJ. = ND (ao,8 l -a l t'io~ 2PflIP(so+k+q) - 2 qJ1 1 Q (so + k+ p)! ( 

D = aot'i l (so+k+ p) (s+ k+ q) - ({1J10 (s + k + p) (so+ k + q) . ) 

In the computation of the integrals Pand Q we assume that the 
function E is determined by the general absorption coefficient k only; 
we have then E = Eo (I + kc x ), where c is a numerical coefficient of 
the order of unity depending on the wave-Iength . We flnd : 

p =(~\ +c, )/;kEo (\ + k<x )e-" pdx I 
= p2 1 q2 ((b

2
- a

2
+ q 2),J ·dJ. + (b

2
+ a

2
- q 2)w ) 2 kEo (I + ~ ) I' 

Q = p2~q2 ( (b2_ a 2+ p 2), J' d j. + (b 2+ a2_ p2) w ) 2 kEo ( 1 + ~c:) 

(22) 

3. For numerical evaluation of these expressions it is flrst necessary 
to consider the different orders of magnitude of the coefficients. The 
coefficient 50 is very large, 105 or 106 times larger than s in the wings 
and k. If we consider k and ~ to be of order zero, and 50 of order 2, 
then S is of order 1. In the expressions (7) for a 2, b2 , e2 , e2 the second 
terms may he neglected, and from 

(23) 

we see that p is of the order 11/ 2 , q of the order O. Thus it appears , 
that the uncertainty due to the variahility of the mean values, is removed 
for the greater part and remains only in the value of q. From the expres­
sions, deduced now from (I8) 

we flnd their order of magnitude O. - 2. 0, and 1. Hence the products 
aoPI and a .,8o are of the order 1 and - 2, and in the expression for D 
the flrst term has the order 3, the second the order 11/ 2' So in D we 
may restrid ourselves to the flrst term only. and in the other equations 
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(21) the value Qlflo may be omitted . The result for Yoo now assumes the 
much simpIer form 

The integrals Pand Q, v,,·hich by these substitutions take the form 

(25) 

can be simplified in the same manner. Since ~.J ~I d), is nearly equal to 

S. the first term in the brackets is the most important in P. whereas in 
Q it is just the second term which is one order larger than the first. 
Substituting these chief terms only into the equation for Yoo we find : 

_ 2pk ( . kc) 
Yoo- (S + k) (so + k+ pj 2 Eo 1 + p + 

.. - j 2s dÀ l 
+ _ 2q(s+ k+ p) • __ ~ 2Eo(l + k~), 

(2 S + k) (s + k+ q) W (so + k+ p) " q 

(26) 

This equation may be used to compute the value of the radiated 
intensity of the centre of a Fraunhofer line; the background intensity 
is Eo (I + c). To find the order of magnitude of these terms and to see 
in what way the determining quantities play a part in them. we simplify 
them by omitting all minor terms. We substitute 

In the second term for q /(s + k + q) we write 1/(1 + 1/; t-~): the 

factor 1 + kc for c = 1 is equal to (1 + I/_~ __ ). so that combined 
q s + k 

1
/ k 

they give a factor I _ __ • which 
s + k 

for k > s approaches to 1. 

The simplified formula is now 

Yoo = (V·3~ + 2 1/ S 11 __ ic- ) 2 Eo 
SSo So s+ k 
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If we compare it with the intensity for the case that the centre of 
the line is not influenced by the wings I). viz (for c = 1) 

y' lO = 2Eo I s~k ' 
we see that the flrst value. if we identify it with the flrst term above. is 
diminished. but that a second larger term is added. produced by the 
radiation coming from the wings. We may state the result for its value 

1 j' in th is way . tha t for k in the ordinary expression now S =;-;:;. sld). is 

substituted. which represents the emission of wing light (of intensity y' lO) 
distributed over the width of the core. In ordinary theory the intensity 
of the centre is produced by black radiation throwing light into this 
centre (coefflcient k) . which is weakened by the atomie diffusion (coef­
ficient sol . Now. that k is very smal\. the light thrown into this 
centre by the wings (coefficient S) takes its place. 

We will apply these formulas to the case of Ca atoms. for which 
numerical data are given e1sewhere 2). The theoretical absorption coefficient 
according to these data may be expressed by 

s = 1/D).2 + [6.16] e- 148! ;1' . 

where the second term denotes the D OPPLER curve of the core and the 
flrst term the wings. There is of course something arbitrary in the 
separation of wings and core ; strictly speaking each partial wave-Iength 
interchanges with every ot her wave-Iength. There is. however. a sudden 
transition from the low wing values to the steep and high central values 
at nearly Dl = 1/ 16 A. 50 we take here our boundaries. at a half-width 
0.063 A . The average value of s within these limits So = [5.63]. The value 

of the wing integral up from this lower limit.fsdi. =.fdl/.6Y = 16 . If 

we assume SI = 1/ 2 S we have S = 128. 
Then the additional term in the central intensity. without the last 

factor which for dark wings falls considerably below 1. is 0.034. expressed 
in fraction of the background . This factor may be evaluated for different 
va lues of k (increasing values of k mean in reality decreasing va lues of 
s and so. i.e . of the concentration). From equation (26) we see that the 
average value is determined by the integral 

I/T V k + s' + V Si J' = 4- ' In V- - -.:: --:;- / -; X 2s1 d)' 
s k + s-Is. 

I) Handbuch der Astrophysik lil I. S. 305: MI LNB. Monthly Notices R . A . S . 89. p.7. 
2) Monthl y N otices R. A . S. 91. p. 151. The values in square brackets are logarithms. 
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wh ere s' denotes the value of s at the lower boundary 0.063 A. For 
k = I. 10. 100 (when the ordinary intensity would be .0015 .. 005 .. 015) 
the factor is .22 .. 46 .. 78. and the additional term is .007 .. 016 . . 027. 

The values found here for the second term. show that it is not 
sufficient in itself to explain the observed central intensities of spectral 
lines. It is. however. important that the central values from a few 
thousandths. given by the former treatment. now ri se above one hundredth. 
so that additional in!luences. not st rong enough by themselves. may raise 
them somewhat higher. Moreover the computation has been made with 
the c1assical resonance formula; according to the quantum mechanics the 
classica I coefficient of the resonance term should be multiplied by factors 
f. certainly amounting in some cases to 4 and perhaps higher still'); 
in this case the additional term in the centre has to be multiplied by 
V f It must be remarked. however. that the resonance coefficient for 
the lowest state of an atom is practically zero; so for the lines absorbed 
by this lowest state s, = 0 and the central intensity is not increased by 
radiation from the wings . 

') MIN NAERT u MUL/JERS. Zeitschr. f. Astrophysik 2. S . 179; PANNEKOEK. These 
Proceedings 34. p . 763. 


