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The Planetary Theory of Laplaéé

By A. PANNEKOEK

I

The main problem occupying astronomers and theorists in the 18th
century was this, whether Newton’s law of gravitation would be able
to explain the motions of the heavenly bodies. Newton had derived
the law, so extremely simple in its mathematical form, from Kepler’s
laws of the planetary orbits; and he had confirmed its validity by ex-
plaining in this way the precession' of the equinoxes, the tides, and
some of the most notable irregularities of the moon. But it implied
that Kepler’s laws could not be strictly true; the mutual attraction of
the planets produces perturbations of their regular courses, some of
which had already become evident through the increasing accuracy of
the observations. So the problem was to give an explanation of these
irregularities by means of theory. Or, in a more general way, theoreti-
cally to derive with the utmost precision the motions of the planets and
the moon, and to compare them with the observational results. A group
of the most brilliant theorists came forward, mostly in France, such
as Clairaut, Euler, d’Alembert, and later Lagrange and Laplace, who
set themselves this task. While gradually the methods of computation
developed under their hands, the explanation of such riddles as the
secular acceleration of the moon and the gradual opposite change of the
periods of revolution of Jupiter and Saturn, for a long time baffled
the most astute mathematicians; and only in the later part of the cen-
tury Laplace succeeded in giving a solution.

All this progress was made possible only owing to the introduction
of a new form of mathematical treatment. Algebra, calculus, had to
replace geometry. It was well known how geometrical problems which
by their complexity demanded the keenest insight and perspicacity,
could be solved in a simple way, by downright computation, when
transformed into algebra by the methods of analytical geometry. The
still more difficult problems of mechanics could be solved by calculus
only. Celestial mechanics, the science of the motions of the celestial
bodies on the basis of Newton’s law of gravitation, could develop in the
18th century only by abandoning Newton’s geometrical treatment and
converting it into an algebraic computation. This was the work of the
18th century scientists already named. The final result of their work
at the end of the century was laid down in Laplace’s Traité de Mécani-
que Céleste (Treatise of Celestial Mechanics).

In his introductory “Plan of the Work” he writes: “Newton pub-
lished, towards the end of the past century, the discovery of the uni-
versal gravitation. Since that time the geometers have succeeded in
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reducing to this great law of nature all known phenomena of the
world system, thus giving an unexpected precision to the astronomical
theories and tables. . . Astronomy, considered in its most general way,
is a large problem of mechanics, in which the elements of the motions
appear as the arbitrary constants; its solution at the same time depends
on the exactness of the observations and on the perfection of the
analysis, and it is of the highest importance to remove all empiricism and
to take from observation only the indispensable data. . .” As a curious
remembrance of the time of the publication (1799) the last sentence of
the preface may be quoted: “I will adopt here the decimal’ division of
the right angle and of the day, and all linear measures will be expressed
in the métre, determined from the arc of the terrestrial meridian be-
tween Dunkirk and Barcelona.” Whereas the length unit with its
decimal system has maintained itself in science, the decimal division of
angles and times has not succeeded in coming into use; thus expressed
in his seconds of time of 0.864 of our seconds, and his seconds of arc
of 0”7.324 we meet here with the uncommon sight of a gravity accelera-
tion of 3.65548 métres and of a lunar parallax of 10536”.

II

From the general analytical treatment of motion and equilibrium,
and of systems of bodies attracting one another, which Laplace gives
in the first part of his work, we take here the simple formulas needed
for the special cases of planetary motions. Analytical treatment of phe-
nomena in space means use of coordinates, rectangular xyz, or other
ones. Newton’s law then says that the acceleration, the second differ-
ential quotient of a coordinate is given by the force in that direction.
Laplace introduces here the space function Q—afterwards called poten-
tial—the gradient of which in any direction is the force in that direc-
tion. Hence

} d*x/dt* = P, = 9Q/0x, similarly for y and 2.
With the sun (mass M) as the only attracting body we have for the
planet at distance »

=—M/¥; Q= M/r; d*x/dt* = — M/7* - % /r, similarly for y and z.

First the problem of two bodies, the simple elliptic motion of a
planet, is discussed. Whereas Newton solved in a rigid and elegant way
the problem, how to derive the law of attraction from the given elliptic
motion, he did not demonstrate explicitly the more difficult problem
that in the case of the inverse square law the orbit needs must be a
conic section. Laplace, on the contrary, through the analytical method
easily solves the latter problem by a double integration; this demon-
stration has since found its way into every textbook.

In the case of more attracting bodies their forces have to be added
together. Here the usefulness of the potential function Q presents it-
self ; forces must be combined geometrically because (being vectors)
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they have different directions, but the space functions of which they
are the gradients are numerical values (scalars) and can be added alge-
braically. Thus for each disturbing planet a term is added. Or, more
precisely, two terms. Because the solar mass surpasses all the planetary
masses by factors of more than 1000, the effect of the planetary attrac-
tions appears as small secondary corrections to the primary regular
orbit. It is these corrections, the perturbations, for which equations
are formed, and the additional disturbing forces that produce them are
the gradients of an additional potential function, called the “disturbing
function” R. Since the resulting motion is referred to the sun as the
centre of coordinates, the effect of the disturbing body, the change in
place relative to the sun, is determined by what its attraction upon the
planet is different from its attraction upon the sun; hence the “direct”
term expressing the attraction of the planet, has to be diminished by
an “indirect” term expressing the attraction of the sun by the body.
Thus for one disturbing body, with mass m’, distance ' from the sun
and p from the disturbed planet, and with 6 the angle between the
radii 7 and 7/, ’
d*x/dt* = — Mx/7¥ + 9R/%x, etc. R=wm'/p— m'vr’ cos 0/7".

In the case of more disturbing planets for each of them two analogous
terms appear in R.

Laplace transforms these equations for the rectangular coordinates
into equations for the polar cordinates: the distance, the longitude, and
the deviation perpendicular to the plane of the orbit. These equations
have to be integrated.

II1

The differential equations, having the required unknown coordinates
themselves contained in the expressions of the forces and of the dis-
turbing function, are far too complicated to be solvable in a direct
way. They must be solved by successive approximations; first the un-
disturbed values of the coordinates are substituted in the expressions
of the forces, and by thus integrating the equations the resulting
changes of the coordinates are found. They are of the order of the
disturbing masses (the largest of which is 1/1047) and are called per-
turbations of the first order. Then these changes should be introduced
in the forces, giving small deviations in the equations and producing
deviations in the first-found results; these are the perturbations of the
second order with respect to the masses. Because they are, at most, a
thousand times smaller than the first-order results, they usually can
be neglected ; only in exceptional cases it is necessary to give attention
to second-order terms.

But the equations for the first-order perturbations also are too compli-
cated to be solved in a direct way. The method developed by 18th
century analysis consists in decomposing each function occurring in
the expressions into an infinite series of goniometric functions, which
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each of them is easily tractable. In the undisturbed elliptic motion the
radius as well as the anomaly are periodic functions which can be ex-
pressed in a series of terms containing sines and cosines of multiples
of angles increasing uniformly with the time, at a rate given by the
mean angular motion # of the planet. With e the longitude at t=0
and = the longitude of perihelion, it is multiples of the mean anomaly,
the angle nt + ¢—m, which appear in all the expressions for radius
and longitude. Thus
r/a=(14+%e)—e(l—...) cos (nt+e—m) —Ye* (1— ...

cos 2 (nt 4 e —w) —etc.

I=nt4+e+ (2e+...) sin (nt+e—mw) -+ (5/4e°—...)
sin 2 (st + e—m) - etc.

Each coefficient contains a series of terms of powers of the eccentricity
increasing by 2, and the lowest power is equal to the coefficient before
the angle. Moreover the angular distance of two planets 6, that appears
as the chief variable determining the variations in mutual distance and
mutual disturbing force, is given, in the case of coinciding planes of the
orbits by (W' —mn) t + € —e. .

In what way the direct term of the disturbing function depends on
this angle is indicated (for the case of Jupiter and Saturn, where the
ratio of the mean distances to the sun is 0.5453) by the heavy line in
Figure 1. This function has to be resolved into a series

1/p=1v Ay + A, cos 8 4+ A, cos 20 + A, cos 36 + etc.
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Introducing a/a’ =a (always the larger radius in the denominator) :
1/p=1/V (a’—2ad’ cos 6+ a*) =1/a’' (1 —2a cos 64} a*)~%,

it comes down to a development of the latter function. Laplace devised
a most elegant development of the more general case where the expon-
ent is taken —s and s can have the values 1/2, 3/2, 5/2, etc. It is given
in the form
(1 —2a cos 04 a*)~® = 15b,(" 4 b, \cos § + b,® cos 20 -+ etc.

where the coefficients b are since known as “Laplace’s coefficients.”
They are functions of the ratio a; Laplace developed them into power
series, studied their properties, and indicated how only the first mem-
bers have to be computed directly, whereas all the others then can be
derived easily by means of their mutual relations. By means of the
numerical values of all these coefficients which he gives in his 6th Book
—in our case b == 2.1802 and the other b’s are 0.6206, 0.2576, 0.1180,
0.0566, 0.0278, 0.0139, 0.0070, etc.—we have inserted the separate com-
ponent curves into our Figure, the 2nd down to the 6th as oscillations
about the line 1.0. The coefficients b for s=3/2 and the derivatives
with respect to a, which are needed for the case of eccentric or mutually
inclined orbits, are likewise computed.

In the case of circular non-inclined orbits the disturbing function is
restricted to the series in the elongation 6, where the indirect term is
included in the second term with coefficient 4,. In the case of ellipti-
cal orbits the factor 7/a and the difference [— (nt -+ ¢) give rise to
products of goniometric functions. These products are easily reduced
to sums of such functions, whereby sums and differences of the arcs
appear as arguments. So for instance

Ay cos 3 (n't—nt+e—e) Xecos (nt4e—m)= :
15 A, e {cos (3n't —2nt 4 3¢ —2e—m) 4 cos (3n't —4nt 4 3¢ —4de -+ 1)}

In the same way #’ of the other planet gives rise to terms with the
coefficient ¢’. When the multiplicity of #¢ and #’t (as well as of ¢ and
¢') are different by 1 the coefficient contains ¢ or ¢’ in the first power;
when by 2 or 3 it is of degree 2 or 3 in the eccentricities. In the same
way the mutual inclination of orbits produces a number of terms hav-
ing ascending powers of the inclination (more exactly: of tan 14¢) in
the coefficients and the longitude of the node & in the arguments. So
the disturbing function consists of a large, or rather infinite number of
terms which, however, since the Laplace coefficients b rapidly decrease
and the eccentricities are of the order 0.1 or smaller (Jupiter 0.048,
Saturn 0.056, Mars 0.093, only Mercury 0.206), have only to be used
in a limited number.

All these terms appear in the disturbing force; its irregular and
complicated variation has been dissolved now into a large number of
entirely regular periodic forms, sines and cosines of arcs containing
the time multiplied by a certain multiple of #’ and a certain multiple
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of u, say i,n' —i,m. Then the changes in the coordinates are found by
double integration with respect to the time. This integration, for a
goniometric function, simply comes down to division of the amplitude
by the square of the coefficient of #, hence by (4,2’ —i,#)2 So the per-
turbations in the coordinates also are found as a series of terms of the
same kind.

Laplace instead of in rectangular coordinates derives the more natural
perturbations in radius and longitude 8» and 8v, for which the disturb-
ing force is somewhat more complicated, and the equations take a dif-
ferent form. He introduces the simple periodic function #=e¢ cos (nt +-
e—=) on which in the undisturbed elliptic motion the variations in
radius and in longitude or anomaly depend by means of simple relations
expressible in rapidly converging series. The same relations between the
disturbed # and the disturbed radius and longitude hold in the real
motion ; hence the differential equation for u with all the perturbation
terms has to be derived and solved. This equation has the form

d*u/dt* 4+ n*u = Z p cos ('t —imt -+ . . )
where the second member consists of all the perturbation terms as
derived and mentioned above. Without these terms the solution would
be a simple “free” oscillation with frequency » and arbitrary ampli-
tude and phase [such as e cos (#f -+ e—=)]; now “enforced oscilla-
tions” are added, having the periods of the additional forces, one for
each term

u=C, cos nt + C, sin nt += [p/{ (s’ —i;m)* —n*}] cos (it —imt 4 .. .)
From this 8u consisting of the sum total 3, the perturbations in radius
and longitude 8 and &v are derived and consist of analogous terms.

In this way Laplace has solved the problem, first theoretically in his
2nd Book, and then, in his 6th Book, in numerical values. In the case
of Jupiter as disturbed by Saturn, e.g., we find in the perturbations in
longitude first a series of terms without eccentricity :

48172 sin § —204"4 sin 26 —16"9 sin 36 — 3"9sin 49 . ., —07041 sin 99

where 6 stands for n't — nt 4 ¢ — e (Laplace gives 6 decimals of his
smaller seconds) ; then 22 terms follow with the first powers of the
eccentricities ¢ or ¢’, among which the largest are
—13874 sin (2, 1, ) 45676 sin (2, 1, ') —4474 sin

(3, 2, =) 2- 8479 sin (3, 2, ™)
where (3, 2, =) means 3n't — 2nt + 3¢ — 2¢ — = ; Laplace gives them
down to (7, 6, ). Then follows a series of terms of the second degree
in ¢ and ¢/, of course not complete. “The large number of inequalities
depending on the squares of the eccentricities and the inclinations for-
bids to compute all of them; in our choice we are guided by the follow-
ing considerations.” These considerations relate to the occurrence of
small coefficients of ¢ or coefficients nearly equal to #, which in inte-
grating produce large amplitudes. In the same way the perturbations
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of Jupiter by the other planets are given, in a smaller number of terms,
because they are smaller; the largest term produced by the earth is
07.12, by Uranus 0”.05. The perturbations of Saturn caused by Jupiter
are of course larger. Among Laplace’s numerical results we find as the
most important terms
4372 sin @ —31”5sin 2 —676 sin 30 —270 sin 40 . . ., —182"1 sin (1, 2, ")

+41771 sin (1, 2, ) 43473 sin (2, 3, «’) —17%7 sin (2, 3, =),
and among the terms depending on the squares of the eccentricities
there is one amounting to —669".7 with (2n’— 4#n) t in the argument.
Uranus produces here terms

+9%2 sin 6 —14"5 sin 26 +2572 sin (3, 2, *').
The motion of the earth shows inequalities 5”.3 sin § +6".0 sin 26 and
3".7 sin (2, 1, =) due to Venus, 3”.5 sin 26 due to Mars, 7”.1 sin 4 due
to Jupiter, in total 47 terms. So at the close of these computations La~
place says: “It suffices to remark here that before the discovery of
these inequalities the errors of the best tables reached 35 or 40 minutes
[we remember that his minutes were only 32”.4] and that they now do
not surpass one minute. . . I have reason to believe that the preced-
ing formulas computed with special care, will add a new precision to
the tables of the motions in the planetary system.”

Laplace’s work was not only a comprehensive summary of what the
18th century had elaborated in exact computation of the planetary
motions ; it was at the same time the starting point for new progress in
the next century. The exactness reached by his formulas, diminishing

. the! errors to some few tens of seconds, was not adequate to the in-

creasing exactness of the observations. The theorists of the 19th cen-
tury built further upon the foundations laid by Laplace; more refined
methods of analysis were devised, terms of higher order were con-
sidered and their number was increased. Bessel’s functions, Cauchy’s
numbers, Hansen’s product-series made easier the handling of elliptic
developments. Leverrier who devoted his life to the exact computation
of the planetary perturbations, included terms of the 7th order in eccen-
tricity and inclination ; thus the uncertainty of the tables and their devi-
ation from observation went down to a few seconds of arc. Then a
more general treatment consisting in a surveyable organization of mani-
pulations up to the highest orders by means of his differential operators
enabled Newcomb to establish in full completeness the theoretical sys-
tem of planetary perturbations.

v

One of the main puzzles of 18th century theory was the great in-
equality of Jupiter and Saturn. Halley had stated, and introduced
(1695) in his tables, that Jupiter since many centuries was accelerating
and Saturn was retarding. Should this go on in the same way, Jupiter
approaching to the sun ever more, the stability of the solar system was
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endangered. The Paris' Academy in 1748 and again in 1752 offered a
prize as reward for a good solution of the problem, but no satisfactory
answer was received. Lambert perceived in 1773 that in the later years
Jupiter was retarding, Saturn accelerating, so that it must be a periodic
phenomenon. At last Laplace succeeded in finding (1784) the true
explanation ; and the treatment of this large mutual perturbation of the
two planets occupies an important place in his Treatise.

It was the discovery of the importance of long-period inequalities
in the planetary motions and of their origin from the occurrence of
small divisors in the integrations. “It is especially in the motion of Jupi-
ter and Saturn, the two largest bodies among the planets, that the
mutual attraction of the planets is sensible. Their mean motions are
nearly commensurable, since 5 times the motion of Saturn is nearly
equal to 2 times that of Jupiter; the considerable inequalities arising
out of this relation, the laws and the cause of which were unknown,
for a long time seemed to make an exception to the law of universal
attraction, and now are one of its most striking demonstrations. It is
extremely interesting to see with what precision the two chief inequal-
ities of these planets, the period of which comprises nine hundred
years, satisfy the ancient and modern observations; the coming cen-
turies will show this concordance ever more in their further develop-
ment.” '

Thus, among the innumerable terms of different orders our attention
is directed to those containing the sine or cosine of 5n't —2nt 4 . . .
What is their period? The mean daily motion of Saturn is 120”.455,
of Jupiter 299”.128, hence 5#n' —2n=4".02=mn/74 (Jup.); the en-
tire circle is performed in 323,000 days==74 Jupiter periods =887
years. If, then, in the disturbing function a term occurs of this form:

d* (dv)/d=Cn*sin {(5n' —2n) t + ...}
double integration affords a term in the perturbation in longitude
oy = —C [n*/ (50" —2n)*] sin {(5n' —2n) t 4+ ...}

Such a term in the disturbing force, through the small divisor, is in-
creased more than 5000 times in the resulting longitude of the planet.
A small acceleration working ever again in the same way for a long
time produces a notable velocity, and this velocity during the same long
time results in a large displacement. Thus terms in the disturbing
function which are extremely small because they contain high powers
of the eccentricities, can yet give rise to perceptible terms in the longi-
tude. But here they are not extremely small. It is the 3rd power al-
ready of the eccentricities that appears in the coefficients of the terms
in question; so the result is such a large perturbation as to alarm the
astronomers during an entire century. Indeed we have such products
as e® cos 3 (nt 4 e—m) X sin 5 (n't — nt + € —¢) producing e* sin
(5n't —2nt 4-5¢ —2¢ —3n), e%¢’ cos 2 (nt +e—=) cos (W't + e —
7') X sin 4 (n't —nt + € —e) producing e?¢’ sin (5n't — 2mt + 3¢
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—2¢ —2x —a'), e'y*cos (Wt-+¢ —a') cos 2 (nt +e — Q X sin
4 (n't —nt +€ —e) producing e'y? sin (5u't —2nt +-5¢ —2¢ —a'
—28&), where y stands for tan %4¢. Thus Laplace in his development
of the disturbing function finds six terms having the third order
quantities
&, &, ee? e, ev* and 'y’

in their coefficients, which have (5#"—2x) ¢ in their argument, and
thus after 1ntegrat10n have (5#'—2n)2 as divisors. Takmg them all
together the result is .
for Jupiter 6v = 1263”8 sin (5#n't — 2nt + 5¢’ — 2¢) +119"5 cos

(5n't —2nt - S5¢' — 2¢),
for Saturn év =—2931.1sin (5n't —2nt +5¢ -—25) —223"2 cos

(50"t —2nt -|-5e —2¢).
Thus Jupiter deviates up to 21, Saturn up to 49’ from their regular
places.

Laplace does not content himself with havmg explained this con-
spicuous irregularity. Terms of the 5th order in the eccentricity, which
may be expected to be nearly 400 times smaller, will be very perceptible:
and have to be included into an exact derivation of the amplitudes.
Terms of the second order with respect to the masses, which will be
nearly one thousand times smaller also may be perceptible and have
to be computed. Thus he says, in continuance of the words quoted
above: “In order to make the comparison more easy for the astron-
omers I have extended the approximation up to terms dependent on the
square of the disturbing force; so I may hope that the values I assigned
to them will be only slightly different from what will be found from
a long series of observations continued over an entire period.” The re-
sulting total values of the four above coefficients are 1237”.41, 112".71,
2872".84, and 261".01.

The discovery of the origin of this large perturbation has directed
the attention of Laplace and later theorists to look at inequalities of
long period in the case of other planets too. Thus he found for Venus
one of 17.50 with argument (54" — 3#u) ¢ due to the earth, and 2”.01
with argument (3%’ —#) ¢ due to Mars, and for the earth one of 1”.13
due to Venus.” Uranus has an inequality of 132".51 due to its mean
motion being nearly 1/3 of Saturn’s, with a period of 7 of its revo-
lutions.

A%

In Laplace’s treatment of the perturbations in radius and longitude
as enforced oscillations’in a system osc111atmg with its proper frequency
n, special terms arise in the case that the acting force has the same fre-
quency. In that case (resonance) the force acts in the same way in
every oscillation and tends to increase indefinitely the amplitude of the
oscillation- which, in the absence of resistances, must grow to infinity.
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Mathematically this appears in such a way that by integrating
d’v/dt?+ 1w’y =2 n p cos (nt-+a)

we get

y=C, cos nt+ C, sin nt + pt sin (nt+a),
so that the amplitude contains the factor £. Expressed in another way:
the development of the disturbing function gives rise to terms that do
not contain the sines or cosines, or have lost the time in their argu-
ments ; then by integration ¢ appears as a factor in non-periodic terms.
Such is the case with the term e? in the development of #/a. Such is the
case also in the multiplication

A cos (Wt—nt+e—e) Xecos (nt4+e—m) Xe' cos (Wt+4e —n')

which produces a term 1/4 Aee’ cos (=" — =) where, if we restrict our-
selves to the first power of the masses, #’ — 7 is a constant.

“The disturbing forces introduce . . . the time ¢ outside the sine and
cosine, or in the form of circular arcs which by their indefinite increase
must make in the long run these expressions erroneous; hence it is
essential to make these arcs disappear.. . As these variations take place
with great slowness, they are denoted by the name ‘secular inequalities.’
Their theory is one of the most interesting parts of the world system;
so we will expound it with all the ampleness that its importance de-
mands.” Indeed the exhaustive treatment of these secular perturbations
by Laplace is a masterpiece of celestial mechanics and deserves the
ample place devoted to it in his great work.

The equations determining the variations of the elliptical elements
are derived by Laplace in a somewhat intricate way, making use of
general considerations on differential equations. This part of the theory
has been made far more direct and elegant in the next century by the
introduction of canonical equations and canonical elements by Jacobi.
In the practical elaboration of the equations, however, and their solu-
tion Laplace’s treatment has remained classical up to modern times. In-
stead of the elements ¢ and = he introduces the rectangular compon-
ents, of e, viz., ¢ sin = h and ¢ cos m=1— representing rectangular
coordinates of the focus, the sun, relative to the centre of the ellipse—
and likewise the inclination is decomposed into tan ¢ sin § =p,
tan ¢ cos & =gq; they are called afterwards the eccentric and the
oblique variables. Then the equations determining the secular perturba-
tions of the elements are found to be '

dn/dt =0; de/dt =0 (by an appropriate definition of €)
dh/dt=(0,1) 1— [0, 11 I'; dl/dt=—(0, 1) h+ [0, 1] K';
dp/dt= (0, 1) (¢’ —q); dg/dt= (0, 1) (p—1"),
where (0, 1) and [0, 1] represent expressions in the constants A4 and
b and the masses of the two planets denoted by the index O and 1.

. “The equation dn/dt=0 just found is of great importance in the
theory of the world system, since it shows that the mean motions of the
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celestial bodies and the major axes of their orbits are unalterable; but
the equation is approximate only. . . It is highly important to know
whether higher powers of the eccentricity should disprove this result
and produce terms with the time as factor. We will demonstrate that,
with respect only to the first power of the disturbing masses, the ex-
pression for v, however far the approximations include higher powers
of the eccentricities and inclinations, will not contain such terms.” Then
Laplace gives a demonstration along general lines that no terms with
the time as a factor will occur, provided that the mean motions or the
periods of revolution of the planets are not commensurable.

Turning now to the eccentricities we see that in the equations for
each planet the time-differential of each component is a linear function
of the other component, of itself and of the disturbing planet. Hence,
since there were 7 planets at the time, it is a linear function of the
other component of itself and of all the other six planets. This holds
for every planet, so that we have a system of equations such as

dh/dt = a,l, + ayl, G a4+ ... +aul;

—dl/dt = ayhy + @k + ahs+ .. L+ auhy
dh./dt = anly + apls + auls + . . . + axl;
et cetera, where the a;; are all known constant coefficients. Substitut-
ing in the second members the present values of % and / of the planets,
considered as constants, we find the yearly variation of these elements,
hence of e and =. But the equations can also be integrated analytically
"so as to give all these elements directly as functions of the time. La-
place shows that there are solutions of the form A= N sin (gt + B);
I=N cos (gt+ B), the argument gt + B being identical for all the
planets. They represent slow circular motions of the centre of
the planet’s ellipse about the sun in a period 2x/g. By eliminating all
the amplitudes NV it appears that g is determined by an equation of the
7th degree, which has 7 different roots, all real and positive. Hence for
any planet there are 7 circular motions of the centre of the orbit about
the sun, combining each with its own period. The periods and phases
are the same for all the seven planets, but the radii or amplitudes are
different. Laplace computed and gives all the coefficients a;; of the
equations; but he did not compute, at least does not give, the periods
themselves and the radii of the circular motions, probably because,
amounting to ten thousands of years or more, they lie far outside any
practical application and any test. In their stead he derives and gives
the yearly variations of the elements for each of the planets for the
year 1750.

Analogous results are found for the secular changes in the com-
ponents of the inclination p and ¢. Their representation by a circular
function means that the pole of the orbit describes at the celestial sphere
a small circle about the pole of the plane of reference. Here also we
have 7 circular motions with very long but different periods, with iden-
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tical periods but different radii for the different planets. Here also
Laplace does not give the periods but only the yearly variations of the
elements, inclination and node, for 1750.

A special discussion is devoted to the stability of the planetary sys-
tem. It depends on the character of the roots of the 7th degree equa-
tion for g. Should some of them be equal or complex, then the sines
and cosines would turn into arcs or into exponentials, so that the eccen-
tricities could increase indefinitely and the stability of the system would
be destroyed. Laplace now shows that the sum total of the expressions
e*my/a for all the planets must always remain equal to the same con-
stant value, which for our planetary system is a small quantity. Then
each of the terms must remain less than this constant, provided that
they all are positive, 7.e., that all planets revolve about the sun in the
same direction. And he shows that in this case all the roots g are real
and different. “Hence the system of orbits is perfectly stable in
regard to their eccentricities; the orbits only oscillate about an average
state of ellipticity, from which they deviate little, keeping their major
axes constant.”

The same holds for the inclinations. From the general dynamical
principles he had derived already that there exists an “invariable plane,”
the plane of maximum moment of momentum for the entire system, the
natural plane of reference for the separate orbits. Moreover he finds that
the sum total of mV/a tan%¢ for all the planets is equal to a constant.
This constant being rather small, it follows that all the inclinations will
remain small, except for a planet with very small mass. Leverrier after-
wards computed that for Mercury the extremes for eccentricity and
inclination are 0.226 and 9°.17.

The importance of these researches consisted in that they raised in
science and in the minds of the scientists the problem of the future,
the durability of the world. When in the 17th and 18th century con-
tinuous changes were discovered in the orbits of the planets and the
moon, it was feared that they could in the long run destroy the struc-
ture of the system. When theory attributed them to the mutual attrac-
tion of the celestial bodies the question was asked whether the pertur-
bations could increase to such amounts as to upset the prevailing order.
Laplace here gave the first reassuring answer in demonstrating the
stability of the solar system in regard to the mechanical effects of the
mutual attraction. The impression it made upon contemporary minds
can be found reflected in nearly all popular books on astronomy from
the first half of the 1Sth century, often with reference to the wisdom
of the Creator who, by having made all the planets revolve in the same
direction and their orbits nearly circular and little inclined, had provided
for the eternity of the world structure on which our life depends.

Laplace himself, however, had already pointed out the restriction in
this demonstration; the simple expressions derived for the secular in-
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